多助理系统(MAS)之间代理之间的合作已成为近年来的热门话题,并提出了许多基于分散执行(CTDE)的集中培训的算法,例如VDN和QMIX。但是,这些方法忽略了隐藏在各个动作值中的信息。在本文中,我们提出了超图卷积混合(HGCN-MIX),这是一种与价值分解的超图卷积的方法。通过将动作值视为信号,HGCN-MIX旨在通过自学习超图探讨这些信号之间的关系。实验结果表明,HGCN混合匹配或超越了在各种情况下的星际争霸II多智能挑战(SMAC)基准中的最先进的技术,特别是那些具有许多药剂的赛车。
translated by 谷歌翻译
已经证明,基于度量学习的人重新识别(Reid)系统继承了深度神经网络(DNN)的脆弱性,这很容易被普通ararar公制攻击所迷惑。现有的工作主要依赖于对公制防御的对抗培训,并且没有完全研究更多方法。通过探索攻击对潜在特征的影响,我们提出了针对度量攻击和防御方法的有针对性的方法。在公制攻击方面,我们使用本地颜色偏差来构建输入的类内变化以攻击颜色特征。在公制防御方面,我们提出了一种联合防御方法,包括两个主动防御和被动防御的部分。主动防御有助于通过构建来自多模式图像的不同输入来增强模型到色彩变化的鲁棒性和多种方式的结构关系的学习,并且被动防御通过迂回缩放来利用变化像素空间中的结构特征的不变性以保护结构特征在消除一些对抗噪声的同时。广泛的实验表明,拟议的联合防御与现有的对抗公制防御方法相比,不仅与同时进行多次攻击而且也没有显着降低模型的泛化能力。代码可在https://github.com/finger-monkey/multi-modal_joint_defence上获得。
translated by 谷歌翻译
深度加强学习(DRL)的框架为连续决策提供了强大而广泛适用的数学形式化。本文提出了一种新的DRL框架,称为\ emph {$ f $-diveliventcence加强学习(frl)}。在FRL中,通过最大限度地减少学习政策和采样策略之间的$ F $同时执行策略评估和政策改进阶段,这与旨在最大化预期累计奖励的传统DRL算法不同。理论上,我们证明最小化此类$ F $ - 可以使学习政策会聚到最佳政策。此外,我们将FRL框架中的培训代理程序转换为通过Fenchel Concugate的特定$ F $函数转换为鞍点优化问题,这构成了政策评估和政策改进的新方法。通过数学证据和经验评估,我们证明FRL框架有两个优点:(1)政策评估和政策改进过程同时进行,(2)高估价值函数的问题自然而缓解。为了评估FRL框架的有效性,我们对Atari 2600的视频游戏进行实验,并显示在FRL框架中培训的代理匹配或超越基线DRL算法。
translated by 谷歌翻译
计算机视觉的挑战之一是它需要适应可变环境中的颜色偏差。因此,将颜色偏差对预测的不利影响最小化是视觉任务的主要目标之一。当前的解决方案着重于使用生成模型增强训练数据以增强输入变化的不变性。但是,这种方法通常会引入新的噪声,从而限制了生成数据的增益。为此,本文提出了一种策略,消除了偏差的偏差,该偏差称为随机颜色辍学(RCD)。我们的假设是,如果查询图像和画廊图像之间存在颜色偏差,那么在忽略颜色信息之后,某些示例的检索结果会更好。具体而言,该策略通过在训练数据中辍学的部分颜色信息来平衡神经网络中颜色特征和无关的特征之间的权重,以克服颜色devitaion的效果。所提出的RCD可以与各种现有的REID模型相结合而不更改学习策略,并且可以应用于其他计算机视野字段,例如对象检测。在几个REID基线和三个常见的大规模数据集(例如Market1501,Dukemtmc和MSMT17)上进行的实验已验证了该方法的有效性。跨域测试的实验表明,该策略显着消除了域间隙。此外,为了了解RCD的工作机制,我们从分类的角度分析了该策略的有效性,这表明在具有强大域变化的视觉任务中,最好利用许多而不是所有颜色信息。
translated by 谷歌翻译
Brain midline shift (MLS) is one of the most critical factors to be considered for clinical diagnosis and treatment decision-making for intracranial hemorrhage. Existing computational methods on MLS quantification not only require intensive labeling in millimeter-level measurement but also suffer from poor performance due to their dependence on specific landmarks or simplified anatomical assumptions. In this paper, we propose a novel semi-supervised framework to accurately measure the scale of MLS from head CT scans. We formulate the MLS measurement task as a deformation estimation problem and solve it using a few MLS slices with sparse labels. Meanwhile, with the help of diffusion models, we are able to use a great number of unlabeled MLS data and 2793 non-MLS cases for representation learning and regularization. The extracted representation reflects how the image is different from a non-MLS image and regularization serves an important role in the sparse-to-dense refinement of the deformation field. Our experiment on a real clinical brain hemorrhage dataset has achieved state-of-the-art performance and can generate interpretable deformation fields.
translated by 谷歌翻译
Current mainstream object detection methods for large aerial images usually divide large images into patches and then exhaustively detect the objects of interest on all patches, no matter whether there exist objects or not. This paradigm, although effective, is inefficient because the detectors have to go through all patches, severely hindering the inference speed. This paper presents an Objectness Activation Network (OAN) to help detectors focus on fewer patches but achieve more efficient inference and more accurate results, enabling a simple and effective solution to object detection in large images. In brief, OAN is a light fully-convolutional network for judging whether each patch contains objects or not, which can be easily integrated into many object detectors and jointly trained with them end-to-end. We extensively evaluate our OAN with five advanced detectors. Using OAN, all five detectors acquire more than 30.0% speed-up on three large-scale aerial image datasets, meanwhile with consistent accuracy improvements. On extremely large Gaofen-2 images (29200$\times$27620 pixels), our OAN improves the detection speed by 70.5%. Moreover, we extend our OAN to driving-scene object detection and 4K video object detection, boosting the detection speed by 112.1% and 75.0%, respectively, without sacrificing the accuracy. Code is available at https://github.com/Ranchosky/OAN.
translated by 谷歌翻译
We study the problem of semantic segmentation calibration. For image classification, lots of existing solutions are proposed to alleviate model miscalibration of confidence. However, to date, confidence calibration research on semantic segmentation is still limited. We provide a systematic study on the calibration of semantic segmentation models and propose a simple yet effective approach. First, we find that model capacity, crop size, multi-scale testing, and prediction correctness have impact on calibration. Among them, prediction correctness, especially misprediction, is more important to miscalibration due to over-confidence. Next, we propose a simple, unifying, and effective approach, namely selective scaling, by separating correct/incorrect prediction for scaling and more focusing on misprediction logit smoothing. Then, we study popular existing calibration methods and compare them with selective scaling on semantic segmentation calibration. We conduct extensive experiments with a variety of benchmarks on both in-domain and domain-shift calibration, and show that selective scaling consistently outperforms other methods.
translated by 谷歌翻译
In this paper, we propose a large-scale language pre-training for text GENeration using dIffusion modEl, which is named GENIE. GENIE is a pre-training sequence-to-sequence text generation model which combines Transformer and diffusion. The diffusion model accepts the latent information from the encoder, which is used to guide the denoising of the current time step. After multiple such denoise iterations, the diffusion model can restore the Gaussian noise to the diverse output text which is controlled by the input text. Moreover, such architecture design also allows us to adopt large scale pre-training on the GENIE. We propose a novel pre-training method named continuous paragraph denoise based on the characteristics of the diffusion model. Extensive experiments on the XSum, CNN/DailyMail, and Gigaword benchmarks shows that GENIE can achieves comparable performance with various strong baselines, especially after pre-training, the generation quality of GENIE is greatly improved. We have also conduct a lot of experiments on the generation diversity and parameter impact of GENIE. The code for GENIE will be made publicly available.
translated by 谷歌翻译
Developing autonomous vehicles (AVs) helps improve the road safety and traffic efficiency of intelligent transportation systems (ITS). Accurately predicting the trajectories of traffic participants is essential to the decision-making and motion planning of AVs in interactive scenarios. Recently, learning-based trajectory predictors have shown state-of-the-art performance in highway or urban areas. However, most existing learning-based models trained with fixed datasets may perform poorly in continuously changing scenarios. Specifically, they may not perform well in learned scenarios after learning the new one. This phenomenon is called "catastrophic forgetting". Few studies investigate trajectory predictions in continuous scenarios, where catastrophic forgetting may happen. To handle this problem, first, a novel continual learning (CL) approach for vehicle trajectory prediction is proposed in this paper. Then, inspired by brain science, a dynamic memory mechanism is developed by utilizing the measurement of traffic divergence between scenarios, which balances the performance and training efficiency of the proposed CL approach. Finally, datasets collected from different locations are used to design continual training and testing methods in experiments. Experimental results show that the proposed approach achieves consistently high prediction accuracy in continuous scenarios without re-training, which mitigates catastrophic forgetting compared to non-CL approaches. The implementation of the proposed approach is publicly available at https://github.com/BIT-Jack/D-GSM
translated by 谷歌翻译
Data compression is becoming critical for storing scientific data because many scientific applications need to store large amounts of data and post process this data for scientific discovery. Unlike image and video compression algorithms that limit errors to primary data, scientists require compression techniques that accurately preserve derived quantities of interest (QoIs). This paper presents a physics-informed compression technique implemented as an end-to-end, scalable, GPU-based pipeline for data compression that addresses this requirement. Our hybrid compression technique combines machine learning techniques and standard compression methods. Specifically, we combine an autoencoder, an error-bounded lossy compressor to provide guarantees on raw data error, and a constraint satisfaction post-processing step to preserve the QoIs within a minimal error (generally less than floating point error). The effectiveness of the data compression pipeline is demonstrated by compressing nuclear fusion simulation data generated by a large-scale fusion code, XGC, which produces hundreds of terabytes of data in a single day. Our approach works within the ADIOS framework and results in compression by a factor of more than 150 while requiring only a few percent of the computational resources necessary for generating the data, making the overall approach highly effective for practical scenarios.
translated by 谷歌翻译